
Technical Report No. 32-450

Error Probabilities for Rician Fading Multichannel

Reception of Binary and N-ary Signals

William C. Lindsey

Mahlon Easterling, Chief _r

Communications Systems Research Section

JET PROPULSION LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA

June 3, 1963



Copyright© 1963

Jet Propulsion Laboratory

California Institute of Technology

Prepared Under Contract No. NAS 7-100

National Aeronautics & Space Administration



JPL TECHNICAL REPORT NO. 32-450

CONTENTS

h Introduction ..................... 1

Ih Detailed Description of the Communication Link ....... 2

A. The Signals ..................... 2

B. The Multichannel Model ................ 2

C. The Multireceivers .................. 3

D. Error Probability for the Coherent Multireceiver ....... 5

E. Error Probability for the N-ary Noncoherent Multireceiver .... 8

F. Error Rate for the Noncoherent Binary Case (N = 2) ...... 9

G. Asymptotic Characteristics of the Coherent Multireceiver for
Various Multichannel Conditions ............. 10

H. Asymptotic Characteristics of the Noncoherent Multireceiver
for Various Multichannel Conditions ........... 11

I. Performance Comparison for the Two
Multireceiver Terminations ............... 12

J. Numerical and Graphical Results for Both the Coherent and
Noncoherent Multireceivers ............... 13

IIh Conclusions ..................... 15

Appendix A ...................... 16

Appendix B ...................... 16

Appendix C ...................... 19

References ....................... 20

FIGURES

1. A multilink channel ................... 2

2. Diagram of the multireceivers ................ 4

3. Error probability for noncoherent multireceiver .......... 12

4. Error probability for noncoherent multireceiver .......... 13

5. Error probability for coherent multireceiver ........... 13

6. Error probability for noncoherent multireceiver .......... 14

111



JPL TECHNICAL REPORTNO. 32-450

ABSTRACT

Performance characteristics are derived for two different forms of

multireceivers (the coherent and noncoherent) which are used with

binary and N-ary signaling through the Rician fading multichannel.

In this model it is presumed that each transmission mode supports a

specular component of distinct strength and a random or scatter com-

ponent which fades according to the Rayleigh distribution. Heretofore,

performance analyses of multichannel links have assumed that the

fading obeys the Rayleigh law. This muhichannel model is sufficiently

general to include four types of practical multichannels: the Rician,

Rayleigh, fixed- and/or mixed-mode multichannels.

Error probabilities are graphically illustrated and compared for

various multichannel models. These results show that multichannel

reception increases the reliability of communication as compared with

single-channel reception. It is found that the effectiveness of multi-

channel reception is highly dependent on the strength of the specular

channel component and the mean squared value of the random channel

component. In particular, multichannel reception is more effective

when applied to the completely random multichannel.

Finally, asymptotic expansions for system performance are derived

for various multichannel conditions. These results indicate the rapidity

with which system performance increases or decreases as the multi-

channel characteristics change. For special cases the error-rate expres-

sions, as well as the asymptotic expressions, reduce to well-known results.

IV
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I. INTRODUCTION

The performance of N-ary mn]tichannel communica-

tion systems operating in noisy-multiplicative environ-

ments is of paramount importance to the system design

engineer. Considered here are the multireceiver perform-

ance characteristics for a binary coherent multichannel

communication system using either orthogonal equal-

energy equiprobable signals or correlated equal-energy

equiprobable signaling techniques and the N-ary per-
formance characteristics for a noncoherent multichannel

communication system using orthogonal signals. The

transmitters, for either of the multireceiver terminations,

operate through the Rician fading multichannel. In mul-

tichannel communications digital information is trans-

mitted over a number of channels in lieu of relying on a

simple propagation mode between the transmitter and

receiver. 1 Examples of this type of communication are

communications via the ionosphere and/or troposphere

both above and below the maximum usable frequency,

lunar relay links, and deep-space probe telemetry sys-

tems. In this type of transmission the propagation modes

experience severe fades from time to time (Ref, 2 and 3).

The usual procedure employed with this type of radio

link is that of diversity reception. 2 The multichannel

model presumed also depicts a resolvable multipath situa-

tion (Ref. 4).

The multichannel model considered is sufficiently gen-

eral to include four types of practical multichannels.

These are the Rician fading multichannel supporting

equally reliable propagation modes, the fixed-mode multi-

channel, the Rician mixed-mode multichannel, and the

Rayleigh fading or completely random multichannel.

Heretofore, when fading conditions have been assumed

to exist in the multichannel, the fading phenomena have

been considered, except in special cases, to obey the

Rayleigh distribution (Ref. 5-8).

The purpose of this Report is to present system per-

formance characteristics based on evaluation of the sys-

tem error probability. In fact, the principal results of

this study are rather general expressions for this error

probability. These expressions differ from previous work

in that they include a wider class of fading phenomena,

In certain special cases, as will be pointed out, results

reduce to previously derived results.

Another goal of this Report is to present asymptotie
performance characteristics for various multichannel

models, By "'asymptotic performance characteristics" is

meant system error-rate behavior at low probabilities of

committing an error.

1The term multichannel is borrowed from a paper by Price ( Ref. 1 ).
It is used here to include diversity reception and resolvable multi-
path reception. Another application, pointed out by Price, is in
situations where it is impractical to employ a single transmitter-
antenna combination or a phased array of antennas and transmit-
ters to handle the transmitter power capabilities.

ZFour distinct types of diversity reception are included here:
diversity as to time, as to frequency, as to space, and polarization
diversity.

Finally, numerical computations are presented for var-

ious multichannel conditions. These computations provide

the system designer with information concerning the

effects of fixed and random multichannel components on

over-all system performance. These characteristics are of

interest in determining the required transmitter output

power for certain a priori known tolerable error rates and
channel conditions,
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II. DETAILED DESCRIPTION OF THE COMMUNICATION LINK

In this discussion of the various parts of the system, a

brief description is given of the signals selected for trans-

mission by each transmitter and of the multichannel

model, followed by a more detailed discussion of the
multireceivers.

A. The Signals

Stored at the ith transmitter is the set {s_ (t)}, k--l,
2,." 'N of signals used for conveying information to the

multireceiver. We assume that all signals are limited in

time to some interval, say 0 < t < T. Within this inter-

val, however, the wave shapes are arbitrary. We further

assume that the signal set has equal cross-correlation

coefficients, i.e.,

1 r

h =2E--lifo sk,(t) sj,(t)dt I (1)

where E_ is the signal energy transmitted by the ith

transmitter and may be defined by 3

3See Section Ill, Conclusions, regarding the assumption of equal
energies among signals as well as the energy allotted to each
channel.

for i ----1,2,.. "M. Finally, we restrict the signals to occur

with equal probability, and in the noncoherent multi-

receiver termination, the quantity ,_ is assumed to be zero;

i.e., the transmitted waveforms are orthogonal. The multi-

receiver is presumed to have at its disposal replicas of

the N signaling waveforms and a statistical knowledge

o{ the transmitted signals, i.e., a priori probabilities of
occurrence.

B. The Multichannel Model 4

The multilink channel to which the transmitter and

multireceiver are presumed to be connected is shown in

Fig. 1. The model for the ith propagation mode may be

best understood by indicating what happens to a signal

which passes through it. In accordance with the signaling

structure stored at the ith transmitter the output of the

ith channel is assumed to be represented by 5

xk,(t, 0,, ai, _) = ai sk,(t-r,) exp [/(,o0t + 8_)] (3)

_The multichannel model briefly described here was postulated by
G. Turin. For a more complete and thorough description see Ref. 4
and 9.

•_We have assumed that the ith channel induces no doppler shift on
the transmitted waveform. If it should, however, we presume that
the multireceiver knows the exact amount of this shift.

,I
2

oo I

v C,=(el,a,,,,}• t
° Io

N-I

NI
,I

2
o°l

• t s,i(t){s,, (,I} , c c,:{0,,o,,,,)

° to

N-I NI

,I
2

oo I

• _ s*x(t) __
/

o I
N-I o

NI

x, (t. e,,og,h)

x,(t,e;,¢., .;)

x.(t,o_,,ore,"M)

Fig. 1. A multilink channel

hi(t)

JT_

.;(t)

v Yl

v y�

_ YM

2



JPL TECHNICAL REPORTNO. 32-450

where we have assumed that s_i (t) was transmitted and

i = 1,2,-..M. That is, the fading medium is characterized

by three statistically independent vector quantities: the

multichannel gain a = (a_, a.,_, "''aM); the multichannel

phase characteristic 0 = (01, O.,.. '0M); and the modulation

delay characteristic x = (r_, rz, '"7_). These vectors are

assumed to be random and consequently must be de-

scribed in terms of probability density functions. Further-
more, we assume that the fading is slow in comparison

with the signal interval of T sec, and that the propagation

modes are mutually independent and statistically inde-

pendent of the additive noise hi(t). Consequently, the

first-order statistic p(ai, Oi) is sufficient to describe the

fading medium. In either multireceiver termination we

assume that x is known exactly, whereas the multichannel

gain and the multichannel phase characteristic, if known

to the multireceiver, are obtained as a result of measure-

ment. The output of the ith channel may be broken up

into two components: a fixed or specular component and

a completely random or scatter component, i.e.,

xki(t) = ski(t - rl) [aie -_, + S e -j_] eJ°'0'

specular ._ rando_ or scatter

component component

(4)

where S and q, are independent random variables, the

first obeying the Rayleigh density function with mean

square 2¢-", and the second obeying the uniform density

function with uniformly distributed phase over an inter-

val of length 2,r. It is easily shown (Ref. 9 and I0) that

the joint distribution of the length and angle of the sum

of the fixed vector (ai, 8_) and the random vector (S, _) is

a_ V a_
p(ai,Oi) = 2,rcr-'----___exp L

= 0 elsewhere

+ ct_ -- 2aiai cos (O_--3i)]
J

O__a i ._

(5)

The three channel parameters ai, ,r, and 8i of Eq. (5)

may be given physical interpretations. The quantity a_ may

be considered to be the strength of the fixed (specular)

component in the ith channel, and 2_ 2 is the mean squared

value of the random or scatter component in the ith chan-

nel. For convenience we define y_ = a_/2_ 2as the ratio

of the average energy received via the fixed-channel com-

ponent to the average energy received via the random

component. Thus the multichannel model is sufficiently

general to represent several types of diversity operation,

e.g., frequency, time, antenna, or the resolvable multipath

situation (Ref. 4). The distribution (Eq. 5) is sufficiently

general, since as the parameter-/_ approaches zero

(absence of specular channel components) we have the

Rayleigh distribution, while if y_ approaches infinity

(presence of specular components) it may be first approx-

imated by the Gaussian density function of mean a_ and

variance 2_'0, and in the limit by the delta function

- ai).

Experimental justification indicating the validity of Eq.

(5) is given fully in the propagation literature (see Ref.

2 and 3). The expression typifies channel conditions for

both ionospheric and tropospheric radio links operating

above and below the maximum usable frequency. It may

be used, as a good approximation, for representing the

received signal strength and carrier phase shift of a signal

received from a tumbling satellite or possibly orbital

chaff. Another interesting example of this type of channel
would be communications via the lunar surface. Radar

returns from the lunar surface indicate that most of the

power reflected from the Moon is returned by specular

reflection even though some of the signal power is re-

turned from the lunar surface out to the limb (Ref. 11 and

12). The limb reflections account for the fading and

correspond to a large y_ in Eq. (4). Hence, such a model
depicts communications via the lunar surface.

After passing through the fading medium, the trans-

mitted signal is further perturbed by additive white,

stationary, Gaussian noise having a fiat power density of

No w/cps single sided. The additive noise is assumed to

be statistically independent from channel to channel and
has the same rms value in each channel. Hence at the

output of the ith channel, presuming Ski(t) is transmitted,

we have yi(t) = xki(t) + hi(t).

C. The Multireceivers

The multireceivers, which are connected to the multi-

channel just described, are shown in Fig. 2a and 2b. In
the coherent termination it is assumed that the multi-

receiver has available the necessary equipment for meas-

uring the multichannel gain and phase characteristic.

Under such conditions the a posteriori probability com-

puting multireceiver has been derived (Ref. 4 and 18).

For each transmission the measuring equipment computes

the multichannel gain and phase characteristic. These

computations are announced to the detection structure of

the multireceiver for use in detecting that particular trans-

mission. In this respect the coherent termination may be

viewed as an adaptive multireceiver, and the error rate

derived for this system is valid for ideal measurement

techniques. Adaptive as used here means a multireceiver

which is capable of performing measurements on the

transmission medium while simultaneously transmitting

3
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information and adjusting its modes of operation so as

to optimize its performance with respect to some a priori

chosen performance criterion. As prescribed by the likeli-

hood function, and under the foregoing assumptions, the

optimum coherent multireceiver passes the observed data

from each channel output into its own receptor, as illus-

trated in Fig. 2a and 2b. For each channel output the ap-

propriate phase measurement is inserted. Electronically

speaking this may also be done in other ways. Following

the phase insertion equipment is a filter matched to the

signals stored at the transmitter. (The phantom lines in

Fig. 2a and 2b denote both the other branches of the kth

receiver.) The matched filter outputs are then weighted

in accordance with the gain of the ith channel and

sampled at the end of the signal interval. After phase

shifting, filtering, weighting, and sampling, the outputs

of all filters are summed and compared. The decision is

then made in favor of that signaling waveform which

gave rise to the largest summed multifilter output. This

process is equivalent to the combining technique outlined

by Brennan (Ref. 14).

The noncoherent multireeeiver (see Fig. 2b) consists

of filters matched to the signaling set {ski(t)} k = 1, 2,

• " N and i = 1, 2, ".- M. The output of these filters is

followed by square-law envelope detectors which are

sampled at the conclusion of the signaling interval, and

the final decision is accomplished by comparing the sums

of the samples from all receiver units. The larger sum

determines the more likely transmitted signal. It can be

shown (Ref. 4 and 6) that in the presence of independent

Rayleigh fading in the multichannel, with fading suflL

ciently rapid that the amplitude of successive waveforms

is approximately independent, this combining and de-

cision method is the optimum a posteriori probability

computer. Such is not the ease if the multichannel con-

tains fixed components. The difference is that the multi-

receiver nonlinear characteristic must change. Thus for
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the Rician multichannel, the noncoherent multireceiver is

actually suboptimum. For a discussion of the necessary
nonlinear characteristic see Ref. 4.

D. Error Probability for the Coherent Multireceiver

For the coherent analysis we restrict the alphabet size

to two signals, 8 i.e., N = 2. If we denote the observed

data samples by Qk = (qk,, qk2, "'" qk_), k = 1, 2, the multi-

receiver computes from these samples

/g

&Q ----_] a_ (q_i -- qt_) (6)

The resulting number AQ is compared at the termination
of each baud with a threshold. If aQ exceeds this thresh-

old, signal one is announced. On the other hand if aQ
is below the threshold value, signal two is decided on.

Since the phase characteristic 0 is presumed to be

known before reception of a baud we work with the

probability density functions for the in-phase samples.

This is given in Ref. 15, namely,

pk(y) =
1

_J2ar _ a_ EiNo(1-X)
i=l

X exp -- '_i .....

(7)

where a_ is the instantaneous voltage gain of the ith chan-

nel, M is the multichannel order, and X is the normalized

signal correlation coefficient. Using Eq. (7) it is possible
to write the conditional error rate for the binary case as

(see Ref. 13)

exp -- dx

PE(al, a2,'"a,)- _ ,_ (8)

M

_ 2 and Ei = EjEi . If we now let X = _] ai
where Ri No _=1

eAnalysis for the N-ary alphabet may be performed; however, to
make the analysis tractable, the correlation matrix for the signal set

{sk,(t) } must be specified by Eq. ( 1 ). For orthogonal signals the
problem is rather easy.

for all i and i, Eq. (8) becomes r

pE(X) -1 fV_ exp l - x---£] dx_ (9)

The probability density function associated with the gain

of the ith propagation mode may be obtained from Eq.

(5) by integrating over the phase variable 0i. This yields

p(ai) = a-Lexp a i ai [o cqai ;0 <ai <
_, 2_, \ ,_ /

= 0 elsewhere (10)

where 1,.(x) is the modified Bessel function of zero order.

In Appendix A it is shown that the density function p(X)

is given by

p(X) =_\p] _ exp 9_,72 jI_l

0<X<_

= 0 elsewhere (11)

where

M

£
P= _a+

i=1

and I_<(x) is the modified Bessel function of order M - 1.

The average error rate may be obtained by averaging

Eq. (9) over all X, i.e.,

fo o°
P_(M) = p(X) e_(x) dX 02)

Substituting Eq. (8) and (11) into Eq. (12), letting X --

cr_t_, and rearranging, gives

L _ dt L [t]'-' [ tZ+a2+x 2]/',(M) = _ t exp 2

X I___ (at) dx (13)

where a = V_/,r and d = _2R(1-)Q. Since the integrand

is an absolutely integrable function, interchanging the

order of integration in Eq. (13) is justified. Employing

this procedure and adjusting the limits of integration

yields

rAt this point it appears that all M transmitter energy outputs for
each signal must be assumed equal; otherwise the process of
averaging over the m's appears to be formidable. See Section llI,
Conclusions.

5
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1 X 2

w_ fo=expE-ylaxfS,I l"-'
v_

[ t2 + aZ.] I__z (at) dt (14)X exp 2

Now the integration of Eq. (14) with respect to the vari-

able t is the generalization of the Marcum Q-function (see

Ref. 16 and 17) defined by

[QM (aft) = Q (aft) 4- exp 2 k=l

(15)

where

_oo [z24-a2]Io(az) dz (16)p (aft) = z exp 2

Thus Eq. (14) may be written as

1 I1- _'--_-2f_QM(a,-_dd)exp[-X--2]dx 1e_(M) = 72 V-dJo

(:7)

We shall integrate Eq. (13) later; however, it is conven-

ient to point out several special cases included in Eq. (17).

First we assume M = 1 and Eq. (17) becomes 8

P_(1)= }I1- X[_T fo°Q(a,_d)exp[ - V--'21dv]

(18)

This is the error rate for a coherent correlation receiver

operating in the face of additive white Gaussian noise

and Rician fading. If we assume further that the channel

is completely random, i.e., a = 0, Eq. (18) reduces to a

previous result (see Ref. 15):

1[1 ]PE(1) = _ -- (19)

sThis integral may be expressed in terms of the Q-function, i.e.,

i E _'(I+_) 1
P_.(1) =Q(a.b)-_[I + _i-'-_] exp[- _1---_ .J

×1°
where

a_ = -_'[Z + 9_d- 2_]
2(l+d)

b' = -_'[i+ 2d + 2_1
2(l+d)

where d =- _r2R(1 -X). If we let X = 0 in Eq. (18) we have

a result derived by Montgomery (Ref. 18). On the other

hand, ff we let a = 0, i.e., no fading, we get the familiar
result (Ref. 9)

P_(1) = 1[l_erf(_aZR(1-X))]_. 2

- exp [-z 2] dz (20)

Returning to the integration problem, we may rewrite

Eq. (17) by using Eq. (15), as

i

PB(M) =P,(1)---I _(--_) k exp[-2]
V_ k=l

X fo" y'exp [_y2 (c _ 1)] lk(a_-_y)dy

(21)

where we let c =- 1/d. Upon recognizing the fact that the

first M - 2 term in the sum plus PE(1) is merely the

error rate for M - 1 propagation modes PE(M -- 1), we

may write Eq. (16) as

P,(M)=P,(M--I)-_(_)'-'exp[--2]

xf o" yU-Z exp[-y'(_)]l,__(a_-_y)dy

(22)

In Appendix B it is shown that Eq. (22) reduces to

P_(M) = P_(M - 1) -- -_ 1 + d

F 1 l'-' ralr L)l+d

(23)

where

e M

{=1

d= _'B(1 - x)

and F(a, c, z)isthe confluent hypergeomekicfuncfion

defined by

a z a(a + 1) • z 2
F(a,c,z) = 1 + -d-if + c(c + 1) 2-]"+ .... (24)

6
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In order to interpret Eq. (2,3) in terms of basic com-

munication parameters it is convenient to define 9

2_2E

t3--2o_R- No 'm =a2.,R

" p(1 - x)
L/_ = _ p_,_ -

,:1 2 + 8(1 - x)

R

,d = _(1 - x)

(25)

where 13 is physically related to the output signal-to-noise

ratio produced by the random or scatter channel compo-

nent and pi is physically related to the output signal-to-

noise ratio of the specular component existing in the ith

channel. Thus in terms of these parameters Eq. (28)
becomes

PE(M)=Pe(M-1)-_\ M 4

× exp[-- Ld F

for M > 1.

1 1 M-1+ 2/_ (1 - x)

)2+#(i-x)

(26)

For the completely random multiehannel, m = 0 for all

m = 1, 2, ... M and Eq. (26) reduces to a previously de-

rived result (see Ref. 15):

1 ,--/2M-2)MP_(M) = _'_(M-1)- V_,

× 4 + 28 (1 - x) (27)

for M > 1, while for M = 1, Eq. (19) is the solution.

Now Eq. (23) may be regarded as a difference equation

for which the solution is easily shown to be

Ld

1 d T d]e_(M) = e_(1) - 2 X/T-4--d exp I 1

L)l+d

(28)

where PE(1) is defined by Eq. (18). For the completely
random multichannel we have

1 _d _x_(2m-2_{ 1 _u-1
4----4-_/_/l+d _=._\m--1] \

(29)

9This definition of/_ is the same as that used by Turin ( Ref. 4 ).

where Pe(1) is defined by Eq. (18). If the propagation

modes are fixed and a_ --- ai for all i = 1, 2, ""'M, Eq.

(8) represents the multilink performance.

We now return to the problem of integrating Eq. (14)

exactly. By utilizing a result obtained by Rice (Ref. 10),

namely,

F t q,'-, t,
2 a=1 L,_,(at)dt

= exp [ xZ +2aZ]_o(x)_÷'I .... (ox) (30)

it is possible to obtain an expression not involving

integrals for the coherent multireceiver error rate. Sub-

stitution of Eq. (30) into Eq. (14) and performing the

necessary integration leads to (see Appendix B)

PE(M) = _- exp 1 + d k=_

( 1 )_ (1 L )× _ F ,k+l, l+d ;d>O

_- _1. d = 0 (31)
2'

where d and L are defined by Eq. (25). As a special case,

with M -- 1, Eq. (31) becomes

1 d
Px(1) = -_ i_+_ expl 17--_dl __'/2k\k_l_k)

x _+_ F ,k+t, t+d (32)

for the single-path Rician fading channel. If ,/ = 0, we
have

1

(aa)

Since

7
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we may write

+1

Thus Eq. (38) becomes

e.(1) = -ff

which agrees with Eq. (19), as it should.

(34)

1]
(35)

E. Error Probability for the N-ary Noncoherent
Multireceiver

We now derive the performance of the N-ary

noncoherent multireceiver where the signal, chosen for

transmission, is selected from a set of N equal-energy

equiprobable orthogonal waveforms.

In this case we have available M channels and N signals

and we assume, without loss of generality, that signal

one was transmitted. Thus, at the output of the rath

receiver unit, signal one has a normalized detected output

x_ whose probability density function (pdf) may be
shown to be 1°

x_ exp I x2xm + AM1

×Io l+fl)2xl" ;x,_>O

-- 0 elsewhere (36)

where A,_ = 2_ -- 2a_R and fl=2a2R. The other

N - 1 signal outputs from the multichannel have only

noise samples y_ with pdf's given by

P(Yk,_) = Y_, exp [- Y-_2_l ; yk, >> O

= 0 elsewhere (37)

for k -- 2, 3, -..N. The pdf's of x_m/2 and ygJ2 are
respectively

1°In Probability Distribution [or Practical Applications, by W. C.
Lindsey, Technical Report No. 32-511, Jet Propulsion Laboratory,
Pasadena, Calif. ( in preparation ).

pl(xm) -- (1 + t) exp 1 +

x Xo > o

= 0 elsewhere

V_(Y_) = exp [-y,] ;ym > 0

= 0 elsewhere (38)

for m = 1, 2, -..M and k = 2, 8, ...N. Moreover, the

density function governing the summed signal statistics

M

X -- _-':x_

may be shown to be 1°

Vl(X) -- 1 +_ "L_ "_exp l+_J

/ h
× ¥ > 0

= 0 elsewhere (39)

where L and fl are defined by Eq. (25) and I,__(x) is the
modified Bessel function of order M - 1. The statistics
for the noise variable

M

y_- _--_y_

may be obtained from Eq. (39) by letting L = fl = 0 and

using the series expansion for I___(x). This turns out to be

yM-1

P_(Y) -- r (M) exp [(-Y)] (40)

for k = 2, 3, "'N. Equations (39) and (40) provide the

necessary information for computing the error date. To

find the error probability we calculate the probability of

correct detection, i.e., the probability that X > Y for all

k = 2, 3, -.-N, and then average over all possible X.

Hence, the probability of correct detection may be written
as 11

(41)

Substituting Eq. (40) into Eq. (41), and integrating, yields

P_(N,M) = fo_ pI(X) [1- "-_ X" (-X)]_-_ dX___0-_7- exp

(42)

l_In general the product notation should be used; in this case, how-
ever, p_(Y) is independent of k.

8
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which becomes, upon using the binomial theorem,

P_(N,M)

V'(--1)" N-1 _ f-Y-iX"
: ,, P,(x) e -xl" dx

The multinominal theorem may be used to expand and

integrate Eq. (48); however, the end result, for practical

values of M and N, breaks up into a formidably large

number of terms. A more tractable general procedure

would be to evaluate the error probability directly from

the probability distributions p_(X) and p,(Y) by means of

numerical integration on a general-purpose computer. If

we let p,, = 0 for all m = 1, 2, -.'M, we have a result

which agrees with Hahn (Ref. 19).

For large N it is appropriate to derive asymptotic
formulas which are valid for N---> oo. To do so, we

approximate

G(X)= 1- ___e = (44)
,_:0 ml 1; X < Xo

by the unit step occurring at X = X0, where Xo is defined

by the requirement that for X --: Xo the exact function

equals

i K-1 X'_ 1 N-1 1G(Xo) : 1 - rio m--[/e-x. = ._ (45)

Thus for large N we have to a good approximation

£Pc(N,M) = p,(X) dX (46)
O

where Q_(a,fl) is defined by Eq. (15). Interestingly enough,

Eq. (47) says that for large eode sizes, the probability of

correct detection is the same as the probability of cor-

rectly detecting M signals by means of a threshold detec-

tion system. The threshold value is determined by Eq.

(45).

If we return to Eq. (43), let M = 1 (single-channel re-

ception), and note that PE(N) ---- 1 -- Pc(N,1), we find that

after integrating

,v-, (_ i,.+, (N _ 1)exp[PE(N) = _n+ 1 +nil n
_=1

where (N n 1 )

n+l+n

(48)

is the binomial coefficient and 72fl : p.

Letting fl : 0 in Eq. (48) we obtain '_

r-_ ( - 1).+_
PE(N,X) : _ _ (Nnl) expl--- np I (49)n+l

which agrees with Reiger's result (Ref. "20). For the com-

pletely random channel we let fl = 0 in Eq. (47) and find
that _3

"( )PE(N.1) : _ Nnl (-1)"_',:_ n+ 1 + nfl (50)

Upon letting N = 2 in Eq. (49) and (50) we have results

that agree with those derived by Reiger (Re/. 21) and Turin

(Ref. 4 and 9).

F. Error Rate for the Noncoherent Binary Case
fN = 2J

In the binary case we write the error rate as

f*P_(M) = p_(X) dX p=,(Y) dY (51)
jx

Substituting Eq. (40) into Eq. (51) and integrating yields

u-1 f oo X m

PE (_'_) = Z JD pl (X) "_ _O-X dX (52)

whereupon using Eq. (39) in Eq. (52) gives, after re-

arranging,

_-_l[l\*-_ILfl 1PE(M) = ._:oErnI(l+fl) k'-_) "--;-exp iT-�3

X f,o X-_+'exp[ - _l+,8]{2+fl'_X]

f 4LlqL  X)
× dx

If we now let Y2 --- X it may be shown (see Appendix C)

that Eq. (58) integrates to

Lt3 q_ fM+m-l'_P.(M) : I2--_fl 1. exp I 2"T'fl'_] ,.:o\ m ]

{ (-m, -LflX _,-_--_/ F M,(l+fl)(2+fl) )

(54)

lZTurin (Ref, 22) has also arrived at this result and has evaluated

the error probability for several values of N and a.

13Numerical results for Eq. (48) and (50) are presently being

computed.

9
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where F(a,c,z) is the confluent hypergeometric function

defined by Eq. (24) and

M

i=l

If we let ,/_ = 0 for all i = 1, 2, ...M, Eq. (54) reduces

to results derived by Turin (Ref. 5) and Pierce (Ref. 6)

for the completely random multichannel, i.e.,

P_(M) = I2--_l_ _, (M+mm-1) f l+fl'_"m=0 \2+_/ (55)

On the other hand, for the fixed-mode multichannel we

let fl = 0 and find that

It is convenient to write Eq. (54) in terms of the gen-

eralized Laguerre polynomials L_ (x) (Ref. 23) defined by

L:(x)= .:o \n-m] ml (57)

where

(;)_ a,bl (a-b)l

is the binomial coefficient. Conveniently enough, the gen-

eralized Laguerre polynomials are related to the confluent

hypergeometric function (Ref. 23) by the relationship

F(-n,a+l,z)= nlF(a+l)
P(n+a+l) L_ (z) (58)

Upon substituting Eq. (58) into Eq. (54) and simplifying,
we obtain

[ 1 ]" [ L# l_['l+By"P_(M) = 2--7# exp Z%-¢ -:o \2+#]

- L#
X L:-I ['(1 +"fl)_-+ fl)] (59)

If we now substitute Eq. (57) into Eq. (59) we have the

final result, namely,

PE(M, [2_]" -LflU-1 _._(ra+M-l_

{1+#_- x-
x \gT_/ -ill (60)

where

L#
x- (1+/3)(2+/3)

G. Asymptotic Characteristics of the Coherent
Multireceiver for Various Multichannel

Conditions 14

The asymptotic performance characteristics presented

in this Section describe system performance at low proba-

bilities of committing an error. These results are derived

in Appendix B.

The approach is to present the result for the completely

random multichannel and then proceed through the other

results, presuming that the multichannel characteristics

change. This displays the rapidity with which the per-

formance of the coherent multireceiver changes as the

propagation characteristics change.

For low error probabilities, i.e., fl > > 1, we have for the

completely random multichannel supporting equally relia-

ble propagation modes 15

1

PEI(M;O,a,X)_-_(2_)I2fl(/_X) ] (61)

The quantity

is the binomial coefficient

(2M)t
(MU"

From this expression it is obvious that phase-reversal

binary signaling techniques yield a 3-db improvement in

signal-to-noise ratio over ordinary orthogonal frequency-

shift-keyed signaling techniques. This is not too surprising

since we have assumed that coherent reception is possible.

If we let X = 0, the result agrees with that obtained by

Pierce (Ref. 6).

If we now consider the Rieian fading multichannel

with small specular components, i.e., fl > p, it is possible

to show that (see Appendix B)

P_2(M;O'a"r) _ "2 "2fl (1 -- _,) exp -- y_

(62)

14For a more detailed discussion of the results given in Sections II-G,
II-H, and II-I, see Ref. 24.

15The subscript n signifies the type of multichannel under consid-
eration. If n = 1, we mean the completely random multichannel,
n -- 2 signifies the Rician fading multichannel, and n -- 3 signifies
the fixed-mode multichannel. This notation is employed in See-
tions II-G, II-H, and II-I.

IO
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which agrees with Eq. (61) if we let y_ = 0 for all i = 1, 2,

• ..M. (Note here that if N of the propagation modes are

Rayleigh-distributed then M-N are Rician-distributed.

This is what we define as the mixed-mode multichannel.)

The effect of multichannel specular components is to insert

exponential factors in the system performance expression,
whereas the random nature of the multichannel introduces

inverse factors, i.e., factors which decrease with increasing

signal-to-noise ratio of the random component. These

exponential factors may remarkably increase system per-

formance. In particular, the ratio of Eq. (62) to Eq. (61) is

P_2(M;O'a"r) = [-_exp[_ y_ I <1eEl(M; 0,a,x) _=,
(63)

If the fixed-channel components are equally reliable we
have

PE2(M; e,a,x) ---- PEI(M; O,a,x) exp [ -M-/2] (64)

for/3 > 1.

We now assume that the multichannel state changes to

the conditions where the fixed components are larger than

the random components, i.e., p > /3. In this case we have

asymptotically (see Appendix B)

=/
T_ exp - [ Y' \2+B(I-X)]J

x 2 +/3(1-x) (65)

where y _ fl = p_. From Eq. (65) we note that the exponen-

tial factor is now the dominant feature in the asymptotic
charactristic. The inverse factor due to the random chan-

nel component is still present, however.

As a final condition we assume that the multichannel

modes become fixed. In this case/3 -- 0 and we have for

p>0

T_ exp [ °'(_ -h) ]
e_ 3 (M; e, a, x) -_ ':, (66)

_2,,- D p,(1-,_)

The salient feature of this result is that system perform-

ance increases approximately exponentially with increas-

ing signal-to-noise ratio. Recall from Eq. (61) that system

performance for the completely random multichannel

increased inversely with the Mth power of 13whereas we

observe the exponential behavior for the fixed-mode mul-

tichannel. If we let M=I in Eq. (66) we have a result

which agrees with that of Turin (Ref. 9). It is interesting

to note that Eq. (66) is recognizable as the asymptotic

expansion for the error function evaluated at

This provides a convenient check with the same result

derived by another method in Appendix B.

H. Asymptotic Characteristics of the Noncoherent
Multireceiver for Various Multichannel

Conditions

We begin the discussion by assuming that the

multichannel is completely random with the additional

assumption that transmitted signals are orthogonal. Sys-

tem performance utilizing correlated signals has been

derived; however, the asymptotic results have not been

computed.

For the completely random multichannel we have,

asymptotically,

e,l(M;'<)-- 1( M' Fll-
_k M/L#J

(67)

for B > 1. The quantity

is the binomial coefficient

(2M1)

(M!) z

Pierce (Ref. 6) was the first to derive this result. System

performance increases for a fixed M inversely with the

signal-to-noise ratio of the random component. Note in

Eq. (67) the absence of the exponential factors.

Suppose now, that due to changing propagation char-

acteristics, the multichannel possesses small specular com-

ponents of distinct strength _ti. For this situation we find

for B >/) (see Appendix C)

[ ]P_ (M; 'r) -_ _- I-T exp -- ",/_ (68)
i=l

11
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as the asymptotic result for the Rician multichannel. If

we let y_ = 0 for all i = 1, 2, ...M, we have Eq. (11),

which agrees with Pierce's result. From Eq. (68) we may

conclude that the exponential factors are existent in the

system error rate as a result of the specular channel com-

ponents and the inverse factor is due to the random

channel component. These exponential factors could re-

markably increase system performance. Taking the ratio

of Eq. (68) to Eq. (67) yields

- exp --/_ _<1 (69)
eel (M; x) .=

which is the same ratio obtained under similar conditions

for the coherent case.

Assuming that further changes in the propagation char-

acteristics introduce large specular components, we have

established (see Appendix C) the following bound for

#<p:

_' re#

(70)

where -/_ fl -- pl. For this multiehannel condition the expo-

nential factors dominate system performance, whereas

the inverse factor appears to be the least significant.

As a final multichannel state we assume that the ran-

dom components are zero; i.e., fl = 0, or the propagation

modes are fixed. The asymptotic result for this situation is

P'3(M; x) N _ exp -- (71)

Again the performance characteristic possesses only ex-

ponential factors as we would expect to find. For M = 1

we see that Eq. (71) is 3 db away from the exact curve.

I. Performance Comparison for the Two
Multireceiver Terminations

Having described, for various forms of multiehannel

conditions, the asymptotic performance characteristics of
the individual multireceivers it remains to consider the

problem of system comparison.

We begin the comparison by considering the com-

pletely random multiehannel. For convenience we rewrite

Eq. (61) and (67), i.e., for fi > 1

I(2M'_r" 1 ]_ (72)Ps, (M; 0, a, _) .-- 2 \ M ] L2#(1 - x)

(73)

Comparing these two expressions we see that the co-

herent multireceiver which performs measurements on

the channel is capable of yielding, for any M, a 6-db im-

provement in signal-to-noise ratio over the noncoherent

multireceiver. Moreover, it has been shown (Ref. 15)

that for low signal-to-noise ratios the coherent multi-

receiver outperforms the noncoherent multireceiver by

an 8-db factor (see also Fig. 3, 4, and 5). This corresponds

to a considerable saving in transmitted power.

Assuming that the propagation medium introduces small

specular components we write from Eq. (62) and (68)

P'2(M;O,a,x)--L(2_)E2_i_B_l_Xi]'_exp[-7: ]

(74)

10o --

i0-1

_ ,.._.,_. __ _.2:0

. \#
M-

', S,

,,- \Io_ _ 5 -- : '_l _ _,

- 7 -- i_ II_ it _ '\',,
17-- I

o, 'I11\

it,)t

i0-_).i I I I0 IOCl

_o_:(,+rz)n

Fig. 3. Error probability for noncoherent multireceiver
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e.2(M; x) _ -_ exp - y
i=l

(75)

The same conclusions may be reached for the mixed-mode

multichannel as were pointed out for the completely

random multichannel. However, for equivalent transmit-

ter powers, system performance would be superior as a

result of the multichannel specular components.

For the multichannel with large specular components

we have from Eq. (65) and (70)

[ 1 I'T E 11e_2(M,x) < _ ,:1 exp 2+# 27#
(77)

where ot = 7_ #. By comparing these two equations it is
difficult to state the exact amount by which the coherent

multireceiver outperforms the noncoherent multireceiver.

The results, however, indicate important system perform-
ance trends and it is an intuitive conclusion that the coher-

ent multireceiver would outperform the noncoherent

multireceiver. The precise amount of improvement is the

subject of the next Section.

- [!--__lexp _ 2/' #(1--X) _].= 7ik2+#(1 - x))J
PE2(M; O,a,x) _

i=1

(76)

J. Numerical and Graphical Results for Both the
Coherent and Noncoherent Multireceivers

Plotted in Fig. 3, 4, and 6 is the noncoherent system

error rate as a function of 16

]_Again we have adopted Turin's notation (Ref. 4). Our 3,2,how-
ever, is one-half the ,12defined in Ref. 4.

I0 o I0 ° Z f

Fig. 4. Error probability for noncoherent multireceiver

-- X2:0

_\\\'X\\ \_ N, 2

, \

_0-4 I0

'li'iI
I I | I I I I I I 11

io oi t 10 io0

Fig. 5. Error probability for coherent multireceiver
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Ray- No - No ] E=(l+`/a)/3 (78)

which, as we have seen, is the ratio of the average

received energy to the noise power density. For conven-

ience of computation we have assumed that all propa-

gation modes are equally reliable; i.e., the specular

channel components are of equivalent strength. We have

already assumed that the random components possess the

same mean square value. Figures 3, 4, and 6 show the de-

pendence of the probability of faulty reception on Ra_ for

four values of the parameter 7_ = 0, 1, 8, 16 and _, and

for several multichannel orders. As seen from Fig. 3, 4,

and 6, for any value of ,/a, multichannel reception increases

the communication reliability as compared to single-

channel reception, whereas the effectiveness of the multi-

channel order is greater as `/2 becomes smaller. If we

compare trichannel reception with single-channel recep-

tion for ,/2 = 8, 16, _ and for a probability of erroneous

reception equal to 10 -a, we find a power gain approxi-

mately equal to 6.68, 5.0, and 3.67 db, respectively. For

an error probability of 10 -2 and ,f- = 0, 8, 16, m, we

realize a power gain of approximately 11.0, 5.0, 4.15, and
3.66 db. Furthermore, these curves allow us to estimate

the extent to which the transmitted signal energy has to

be increased to detect the signal with a certain relia-

bility for the same multichannel order. We see that for

large `/2 and the same error probability, the required

increase in transmitter energy is small and becomes

smaller as M is increased. As a matter of fact, the required

increase in transmitter energy is smaller for low signal-to-

noise ratios than it is for large signal-to-noise ratios. This

result is easily understandable from a physical point of

view. When the signal-to-noise ratio is small the ampli-

tude of the signal will sometimes be large, as a result of

the fading, hence leading to the same signal-to-noise

ratio that would occur if the signal amplitude were fixed.

On the other hand, for large signal-to-noise ratios, the

signal amplitude will sometimes be small due to its fluc-

tuations, and consequently requires a large transmitter

energy to make certain that on the average the signal will

not fade below the required detection reliability.

In the coherent case, Eq. (8) and (27) have been eval-

uated on a digital computer, and the results for selected

values of M and ./2 = 0, m are presented in Fig. 5. Again

we see that the effect of multichannel reception is de-

pendent on the value of ,/2. In particular, multichannel

reception is more effective when applied to the corn-

pletely random multichannel, i.e., `/2 = 0, than when

applied to the fixed-mode multichannel. As a function of

the multichannel order Act we see that large gains in

signal power are realized for small values of M, whereas

for M > 6 the gain in signal power is not as significant.

Note that for large values of M > 10 the curves lie rela-

tively close together. This tends to suggest that in the

coherent case, multichannel reception becomes less effec-

tive for larger values of M regardless of the fading prop-

erties of the transmission medium. It appears that for

large M, system performance is limited by the additive

noise. Comparing dual-channel reception with single-

channel reception for an error probability of 10 -2 we

realize, for `/2 = 0, _, an approximate power gain of 8.85

and 3.67 db respectively. For an error rate of 10 -a we

obtain a gain of approximately 11.7 and 3 db respectively.

_o I

o .=.

\ A\kT \
91

13----

i0 -3 _

15--

17--

19--

_0" ,I I

\

/
 /iI....

I0 I00

Ro,= 0* y2)_

Fig. 6. Error probability for noncoherent multireceiver
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III. CONCLUSIONS

The error probabilities have been derived and graph-

ically illustrated for the coherent and noncoherent multi-

link communication systems which transmit information

through the Rician fading multichannel. The effectiveness

of multichannel reception is highly dependent on the

basic multichannel parameter 7_. In particular, multi-

channel reception is more effective when applied to

multichannels supporting small -/:s. The asymptotic error

expressions indicate the relative gain in signal-to-noise

ratio obtainable using the coherent rather than the non-

coherent multireceiver termination. For large signal-to-

noise ratios, 6 db is an upper bound on improvement,

while for small signal-to-noise ratios approximately 8 db

may be realized.

The results for the coherent case provide ideal per-

formance characteristics for the newer types of data-

transmission systems, i.e., systems which are designed to

perform multichannel measurements. For the N-ary non-

coherent multireceiver, it does not appear to be too diffl-

cult to use numerical integration techniques to obtain
numerical results for the error rate.

In tile foregoing analysis, it has been assumed that the

energies associated with the signals stored at all M trans-

mitters are equal. If, on the other hand, we had attempted

to derive the asymptotic formulas under the assumption

of distinct signal energies we would have encountered

difficulty when attempting to average over the multichan-

nel gain. This tends to suggest that there could exist an

a priori signal-energy distribution which will minimize

the error probability. One would expect to find that most

of the energy should be transmitted into those channels

which are not encountering severe or deep fades. This is
in contr_t to the fixed multichannel case where the

asymptotic error probability depends only on the total

transmitted energy. Price has noted this result (Ref. 1).

The way in which the energies should be distributed

among the various channels is yet to be determined. How-

ever, if the transmitter is unaware of the multichannel

gain, intuitively the best procedure is to distribute the

total energy uniformly.

15
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APPENDIX A

' El[co_ (s) = _ exp - _,_
S

X exp

By means of characteristic functions we wish to de-

velop Eq. (11). We begin by writing the characteristic

function of the variable a_ from Foster and Campbell

(Ref. 25), i.e.,

1 1

_ (A-Z)

The characteristic function for the variable X is the prod-

uct of M expressions like Eq. (A-l). Hence

[']"Cx(S)-- (_----_)'' S+- 1. exp[-_----]

4M S +

(A-2)

where

M

e= E<
i=l

The inverse transform of Eq. (A-2) is given by the Foster

and Campbell Fourier transform pair 650.0 (Ref. 25). The

result is Eq. (11), namely,

1 /x\.-, [ x+e]t_,p(X) = _ff)"7- exp 2a---:-'j

x (-_) ;o_< x < oo

= 0 elsewhere (A-3)

APPENDIX B

1. Derivation of Eq. (23)

In order to derive Eq. (28) from Eq. (22) we need a

result given by Watson (see Ref. 26, pp. 393-394),namely,

f exp [-a2xq x.-'I_(bx)ax = 2v+1a_+r l-'(v+ 1)

X expF b" 1F(V--I_ -b')L-_-_A \_ +l,v+l,--_- 7- (B-l)

where F(a,c,z) is the confluent hypergeometric function

defined in the text by Eq. (24). Therefore

,(M) =f*°yJt-'exp[-y'(_--_)lI,-_(aV_y)dy

= expL f Tr(M)

X F , M, 2(l+c)J

and from Eq. (22) we write

Pg(M) = PE(M-1) -- G(L,d,M) (B-8)

where

= 1 [_CaCTr-'exp[____]l(M , (B-4)G(L,d,M) --_

16
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Substituting Eq. (B-2) into Eq. (B-4) gives

1 [ c _"-1_11 F(M-_)G(L,d,M) = _ \l-+---cc] _- c F(M)

a2
× M a2c -]

Z(i¥c)/

(B-5)

Using the well-known result that

(1)F M -- = (M--1)l 22''-1' V_ (B-e)

Eq. (B-5) becomes

IFZ F c 7"
G(L,d,M) = _ _]---4-_ LT-4-_ I (2MM--21)

XexpF a2_ / 1 _1 , aZc l1  .iiT ljL

where

(b)- a!bl(a---- b)l

is the binomial coefficient. Noting that

(B-7)

M

1 aS - P -L= _ _
c=-_and 2 2a _ _=1

we may write Eq. (B-7) as

1
G(L,d,M) = ._ l_+d (2M-2'_ [ 1 ,_.-1

X 1-_-dl -Lexp I FI1,M]--_I (B-S)

This is the required result.

2. Derivation of I:q. 1311

Changing the order of integration in Eq. (18) we have

Ira] Ea'-]'-'1 exp dx t

t2 + a2]Iu_, (at) dt (B-0)× exp 2

which is equivalent to Eq. (14). Substituting Rice's result,

namely Eq. (80), into Eq. (B-9) and rearranging the terms

yields

V¢_ 9PI,=0

Xexp[-x_(1-T)]l,÷,(av_x) dx

(B-10)

Performing the integration of Eq. (B-10) by use of Eq.

(B-l) we find

1
PE(M)=2 expF-Ld-lF--d-_'-%l1-4--dJ _/1--_ _ ( k ) (_-4--_)_ 1

× __
1 .d=0

=_,

which is Eq. (gl).

(B-f1)

3. Asymptotic Characteristics for the Coherent
Case

If we assume that the multichannel supports small spec-

ular components, i.e., P < 1, then Eq. (A-3) reduces to

XM-]

p(X) -- (_,_)_r(M) exp [--L] (B-12)

since for small values of X we have the approximation

1

I._, (X) ,_ V---_ [ - X] "1 (B-13)

The average error rate may be obtained from Eq. (9)

by averaging over the variable X, i.e.,

f-P, (M) = p(X) Pe (X) dX (B-14)

where we have omitted the superscript notation used in

the main text. Using Eq. (9) and (B-Ig) in (B-14) we may
write

p(X) dX exp [-y2] dy

where

a __

E _ signal energy

No double-sided noise power density

X = signal cross-correlation coefficient

(B-15)

17
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If we now change orders of integration (which is justifi-

able), Eq. (B-15) becomes

'fo foPE(M) ,_ -_ exp [ _yZ] dy _- p(X)dX (B-16)

where

Substituting Eq. (B-12) into Eq. (B-16) yields

PE(M) "_ exp(-L) f_o y21Mt Vg weexp [-vq dv
(B-17)

PE(t) -_ ----L exp I- -_] (B-23)

for dt 2 > O. Thus the error rate expression becomes

e.(M) = p(t) edt) dt (B-24)

which becomes, upon substituting Eq. (B-21) and (B-2,3)

into (B-24),

exp

This easily integrates with respect to y, giving

exp [-L] [1"3"5...(2M-1)]

PE(M) ,_ 2(M1) [2.aZR (l--X)] u (B-18)

which may be rewritten as

P,(M) ,_ exp [-L] (2M-l), [ 1 1"MI (M-1)l 2fl(i- x) (B-19)

or, more conveniently,

l[2M_ E 1 ]uP,(M) -., 2 \ M ] exp [- L] 2fl (1 -- ),) (B-20)

which is Eq. (62) when we substitute for L. Upon letting

L ----0 we have Eq. (61).

Consider now the multichannel which possesses small

random components and large specular components.

First we rewrite p(X) in terms of the new variable

X = a2t z. Thus p(X) becomes

Hence Eq. (9) becomes

edt) -

t_ + a2.1 Iv-, (at) dt (B-21)
2 d

_r

1 exp - dx (B-22)

where d = a2R(1 - x). Using the asymptotic expansion
for the error function we have

Integration of Eq. (B-25) may be performed by using the

well-known result (Ref. 26)

f0 °
exp [ --a2x 2] xV-' I_(bx)dx

= 2,+,a,+_r(v+l)F(_2+-_v ,v+l,_--f)
(B-26)

where F(a,c,z) is the hypergeometric function defined by

Eq. (24). Substituting this into Eq. (B-21) gives

2---_ _ _exp [--L]

r(M) F , M, -_--_--d
(B-27)

If we now use the asymptotic expansion for the hyper-

geometric function F(a,c,z), namely,

E (1)],F(a,c,z) _ r(c) (B-_)
r(a) _ 1 + 0

Eq. (B-27) reduces to

exp [-1 7"
e (M) --. L j (B-29)

which becomes Eq. (65) when the definitions of d, L, fl and

p are used.
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APPENDIX C

Eq. (58) may be written as

_-i I / 1 \_-IF l
P,(M) = ,=o_]ml(l+fl)k_) ' L- .J

Xf_Y'+Z'*exp[-//2+fl_Y z-]\]--_--_] ]

x I,,_1L_/_] dr (C-l)

Using Eq. (B-l) to integrate Eq. (C-l) we obtain, after

some algebra,

pE(M):[2__]" exp[ _]_/M+m--1),_=0\ m

L2+#][-1+#-]"F (-m,M -L#x (I+#)(_+#)/ (c-e)

which is Eq. (54). For large random components or small

specular components, the hypergeometric function may

be approximated by unity, i.e., fl > > 1. Under such multi-
channel conditions we write

[ i ]" "-l[M+m--l_[l+fl'_"PE(M) .-_ _ exp [-L] ,,:oE\ ra ]k-2"--_]

(c-s)

where

K

L=E_;
i=l

Using a technique developed by Pierce (Ref. 6), we write

1+#--1 i
2+# I+#

and make a binomial expansion of each term in the sum.

Such a procedure yields, after rearrangement of the terms,

[X]"eE(M) = _ exp [-L]

"-' (-I)'(iM-I)I [ 1 ]"X E (M--l)1 (M--m--1)lml(M+m)
_=0

(c-4)

At large signal-to-noise ratios (small error probability) the

first term in the sum predominates and we have to a first

approximation

P_(M) .-- -_ exp [ -L] (C-5)

Substituting for L gives Eq. (68). If we let _ = 0 for all

i = 1, 2, -" M we get Eq. (67).

Finally, we wish to derive Eq. (70). For this case we
assume that the multichannel possesses large specular

components such that pl > ft. Using the first term of the

asymptotic expansion for F(a,c,z) [see Eq. (B-28)] and
Eq. (C-2) we obtain

[1]PE(M) <

where

-Lfl "-* 1 [-(l+fl_x]"

(c-6)

(i+#)(2+#)

Now

L#
X=

]" Ft'l+  ]z -< .:oEm_Lk2+#] _ < exp Lk2+#/x
(c-7)

and we have the following upper bound:

-L#
P.(")<[2--_]'exp[-_'_( 1--

Substituting for L gives the required result. If we let fl = 0,

substitute for L, and rewrite, we get Eq. (70).
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